
Rick Ostidich, 2025.02.14 page 1 of 10

Very long comment to Mathologer’s video:
Powell's Pi Paradox: the genius 14th century
Indian solution (video published 2023.05.06)

This is www.RickOstidich.com/Madhava.pdf, by Rick Ostidich, 2025.02.14

Foreword: this text was originally conceived as a comment for the YouTube video linked above; but it ended up being

10 pages long, so I decided to publish it here on my website, and on the YouTube comment I’ll link to this Pdf. If you

come here from a different path, please check the video first. The formula we’re talking about is:

𝜋 ≈ ∑
4(−1)𝑘−1

2𝑘 − 1

𝑛

𝑘=1

 +
(−1)𝑛

𝑛 +
12

4𝑛 +
22

𝑛 +
32

4𝑛 + ⋯

This is another one of my all-time favorite videos on YouTube.

After watching it again (for the nth time!), I decided to measure how deep a correction term we need in order to

obtain the number of digits of precision required, in the fastest way; that is: what is the lowest count of total

divisions, including both those in the alternating series and those in the continued fraction.

I worked an entire month of my free time on it, and the final result of my experimentations is pretty impressive: by

using a slightly improved version of Mādhava's formula (the same that he probably would have used in practice),

it's enough to do n total divisions to obtain more than n digits (in base 10) of precision.

(Later in this text, I copy here all the Pari/GP functions that let you experiment by your own the same results, and

more.)

For example: with 28 divisions you obtain 30 digits (base 10) of precision, with 94 divisions you get 100 digits, with

945 divisions you get 1000 digits.

The count of divisions is linearly dependent on the number of digits required. In the limit (I tested up to 1 million

digits!), in order to obtain d digits (base 10) of precision, you need around c=d∙0.944646… total divisions: sum the

first n=d∙0.823006… terms (which requires only 1 division for each pair of terms in the improved version), and add a

correction term of m=d∙0.533143… divisions in the continued fraction (1 division per… each fraction).

For big-enough numbers of digits, the range for the (n,m) required to obtain the lowest c is quite wide, so that you're

guaranteed to obtain at least the precision that you need by using values slightly greater than the ratios above.

Last year, Matt Parker's team (Stand-up Maths channel) exerted 10ˈ000 long divisions in order to achieve 𝛑 with a

mere 139 digits of precision.

With Mādhava's (improved) method, it's enough to do 132 long divisions (plus 131 sums, 1 shift and 1 subtraction)

to achieve 140 digits of precision.

We all know that there are series which converge even more rapidly (like Chudnovsky algorithm), but probably

Mādhava's ancient method (with the following improvements) is still the fastest for human computing.

If somebody among you happens to be in contact with Matt Parker, please let him know about this, so that maybe

next March 14th he will use this method to manually calculate 𝛑 to a precision humans never reached so far.

https://youtu.be/ypxKzWi-Bwg
https://youtu.be/ypxKzWi-Bwg
https://www.rickostidich.com/Madhava.pdf
https://youtu.be/LIg-6glbLkU

Rick Ostidich, 2025.02.14 page 2 of 10

Let's start and define Madhava(n,m) as the function which returns the 𝛑 approximation from n terms of the

alternating sum, and m division in the correction term. Please remember these n and m variable names, which are

used for the rest of this text.

First of all, here is a simple Pari/GP script that replicates Burkard's example at the beginning of the video (it sums

the first million reciprocals, without any correction term):

localprec(60); my(show(s,x)=printf("%16s = %.59f...\n",s,x)); show("Pi",Pi); \
x=sum(k=1,10^6, if(k%2,+4.,-4.)/(2*k-1)); show("Madhava(10^6,0)",x); \
show("difference",Pi-x)

(I guess that many of you already know the free Pari/GP calculator, available for every PC, and even on

"smartphones" with PariDroid. You need a recent version to use the localprec command, otherwise use

default(realprecision,d).)

The result displayed (in half a second on my old laptop) is:

 Pi = 3.14159265358979323846264338327950288419716939937510582097494...
 Madhava(10^6,0) = 3.14159165358979323871264338327919038419717035250010581556479...
 difference = 0.00000099999999999975000000000031249999999904687500000541016...

Let's now include the correction term of m divisions, in a (simple and un-optimized) version of a complete Pari/GP

function:

Madhava(n,m) = { my(p=0,q=4,f); forstep(k=1,2*n,2, p+=q/k; q=-q);
if(m==0, return(p)); f=if(m%2,n,4*n);
forstep(k=m-1,1,-1, f=if(k%2,n,4*n)+k^2/f); return(p+(-1)^n/f) }

(For non-experts: the % operator in Pari gives the remainder, and the <<,>> that I use later are binary shifts - i.e.

multiplication by 2ⁿ.)

Note that here we use the exact t_FRAC number type (a/b with big integers) instead of floating-point numbers,

because they are much faster in this application. To achieve d digits of precision, the size of the integers reaches

around d digits, but only towards the end of the computations (both for AltSum and ContFrac).

(Matt Parker: I would give it a try with integer ratios instead of floating-point, also for manual computations!)

If you want to see the decimal approximation of 𝛑 given by this function, use "Madhava(n,m)+0.".

Example for 38 digits of precision (default in Pari), using 50 divisions (the next improved version will need only 36):

? Madhava(27,23)
%1 = 8533292532130963230441548153554741527314432 /
 2716231374675597807860607334416591683524575

? Madhava(27,23)+0.
%2 = 3.1415926535897932384626433832795028842

? Pi
%3 = 3.1415926535897932384626433832795028842

The first is the exact ratio for the Mādhava approximation, the second is the rounded floating-point value, the third

is the rounding of the actual 𝛑 – identical here.

Rick Ostidich, 2025.02.14 page 3 of 10

Let's improve this algorithm: first of all we extract the first term from the alternating sum, so that starting from the

second term each pair of terms is of the form −
4

4𝑘−1
+

4

4𝑘+1
, which (thanks to algebra auto-pilot) simplifies to

−
8

16𝑘²−1
; this saves a division for each pair of terms (hence theoretically requiring half of the time).

Moreover, as every Mathologer regular should know, consecutive perfect squares are separated by consecutive odd

integers; so that instead of calculating a=16k²-1 for each k, it's enough do add a certain integer b (initially 3∙16) to

the previous value a (initially 15), and adding 2∙16 to b at each iteration. I’ll use a similar logic also for the squares in

the continued fraction – which go backwards since we have to start from the bottom of the continued fraction.

Also for the second part (regarding the continued fraction), I have paired each couple of divisions in a single cycle

(excluding the first term), in order to simplify the inner loop. Here too we could save a division, but at the cost of

several multiplications and complicating the script - for the time being I didn't find anything better, so I decided to

keep it simple.

It would be easy to change the function in order to support even numbers for m, but all the tests that I did so far

used this version, so we'll use this version for the rest of this text. (Otherwise, it would require me other days of

work and redoing the tests, before publishing this.)

Here is the improved function (Mādhava release 2.0), that requires odd n, and m odd or =0 (here I add the check for

input parameters, assuming however that they are given as integers):

Madhava2(n,m) = { if(n<=0 || n%2==0 || m<0 || (m<>0 && m%2==0),
 error("invalid arguments")); my(p=0, a=15, b=48, c=n>>1);
while(c, p+=1/a; a+=b; b+=32; c--); p=4-p<<3; if(m==0, return(p));
my(f=n, n4=n<<2, a=(m-1)^2, b=2*m-3);
while(a, f=n4+a/f; a-=b; b-=2; f=n+a/f; a-=b; b-=2); return(p-1/f) }

Of course, this function gives exactly the same results as the previous version, but for the example above of 38 digits

it needs only 36 divisions (26/2 for the AltSum, 23 for the ContFrac) instead of 50.

Oddly enough, in Pari/GP this function doesn't save a lot of time with respect to the previous version, but I assure

you that if you implement this new algorithm in a real computer program (in machine language, obviously), the

improvements are great. And, we are mainly interested in counting the number of divisions, which are the slowest

calculations both on a computer and by hand: with the new version we save a lot of them.

The amazing thing is that now we can go and search for each n what m permits to obtain a certain count d of digits

of precision, with the least c number of total cycles (=divisions, I use c here since d is already used for "digits"), or

what n for each m; then measure what are the best estimations for n and m as functions of d.

Note that there is a range for (n,m) for which you obtain the same d digits with the same c cycles; for d=38 digits

(like in the previous example) and odd (n,m), you can use (27,23), (31,21), or (35,19), all of which require 36

c=cycles=divisions: c=(n-1)/2+m, and a deeper correction term give precision more quickly than more terms of the

sum, within certain limits.

For big d, the range is much wider, and it can be very nicely approximated (excluding exceptions) by 𝑟𝑎𝑛𝑔𝑒 ≈
1

2
√𝑑.

More on this later.

Rick Ostidich, 2025.02.14 page 4 of 10

As already stated above, I've seen that the optimal values of (n,m) for d digits tend to be centered around

(d∙0.823006,d∙0.533143), so here is another function that does it all by itself according to the number of digits

required, and it also shows a progression bar during the calculation - which is nice for long ones:

MadhavaD(d) = { my(n=bitor(round(d*0.823006),1), m=bitor(round(d*0.533143),1),
 divs=n>>1+m, p=0, a=15, b=48, c=n>>1, ch=c\50, cl=ch);
printf("using Madhava2(%u,%u), which makes %u total divisions\n",n,m,divs);
gettime(); print1("AltSum: ");
while(c, p+=1/a; a+=b; b+=32; cl--; if(cl==0,cl=ch;print1(".")); c--); p=4-p<<3;
print(" ",strtime(gettime())); if(m==0, return(p));
my(f=n, n4=n<<2, a=(m-1)^2, b=2*m-3); ch=m>>1\50; cl=ch; print1("ConFra: ");
while(a, f=n4+a/f; a-=b; b-=2; f=n+a/f; a-=b; b-=2; cl--;
if(cl==0,cl=ch;print1("."))); print(" ",strtime(gettime())); return(p-1/f) }

Example for 100ˈ000 digits:

? x=MadhavaD(100000);
using Madhava2(82301,53315), which makes 94465 total divisions
AltSum: .. 2'125 ms
ConFra: .. 2'047 ms
time = 4'250 ms.

? localprec(100018); x-Pi
%2 = -3.9985486715178690131693898230146383392 E-100001

As you can see, here it took around 4 seconds, and gave around 100ˈ000 digits of precision, as expected. Pretty nice.

If you want to try MadhavaD(10^6): it does Madhava2(823'007,533'143) and gives 1 million digits of precision, with

944'646 divisions, in around 7 minutes of time in Pari/GP.

By the way: I also tested another famous formula variation from Mādhava, the one starting with √12 + ∑ …, but as

far as I managed to simplify it, it still requires more divisions than this version.

This comment is already too long. If you're interested, I'm adding a comment to this comment (p.s.: it follows here

on the next page), with all the Pari/GP functions that let you play with the formulas, and experiment all the results I

found, plus surely much more if you have time to work on it: for example in order to get more precise constants, and

for other numerical bases. (Personally, in most of my time, I use base G "hex" or base C "dozenal", which I like much

better than the boring base A=9+1 "decimal".)

There is also a function ready to send a big table of data to a spreadsheet program, in order to draw really

interesting and wonderful graphs.

And, as a homework for the keen among you, you can try and give a bullet-proof… proof that the constants I

approximated here actually converge to an exact nice value, in a closed form involving 𝛑 (or maybe 𝛄). ☺

Rick Ostidich, 2025.02.14 page 5 of 10

Second comment

The Pari/GP functions that automatically find the best range for (n,m) required to achieve the lowest count c of

cycles (=divisions) for the count d of (base 10) digits of precision are:

BestN(d,m,v=1,ratc=0.944646,pi=0)= { local(tests=0, gobackn=1, x,c,minc,minn,
n=bitor(max(round((d*ratc-m)<<1),1),1));
local(r(x)= round(x*10^(d-1))); if(pi==0, localprec(d+1);pi=r(Pi);localprec(19));
local(prec(x)= x=r(x); if(x==pi, d, d-#Str(abs(x-pi))));
local(testn(s)= x=Madhava2(n,m); tests++; c=n>>1+m;
 if(v>0, printf("%7s n, [c,n,m,digits~]=%5u\n",s,[c,n,m,prec(x)])));
testn("first"); if(r(x)<>pi, if(v>0, print(" - not enough precision")); gobackn=0;
until(r(x)==pi, n+=2; testn("inc"))); minc=c; minn=n;
if(gobackn, if(v>0, print(" - go back")); n=minn-2;

 while(n>=1, testn("dec"); if(r(x)<>pi, break); minn=n; minc=c; n-=2));
 if(v>0, printf(" ;[c,n,tests]=%5u\n",[minc,minn,tests])); [minc,minn,tests] }

BestM(d,v=1,adapt=1,ratc=0.944646,ratm=0.533143)= {
 localprec(d+1); local(pi=round(Pi*10^(d-1))); localprec(19);
local(tests, ttests=0, gobackm=1, ratc=ratc,minc,minn,maxn,minm,maxm,m1,m1r,
 m=round(d*ratm)); if(m<>0,m=bitor(m,1));
local(testm(s)= [c,n,tests]=BestN(d,m,v-1,ratc,pi); ttests+=tests;
 if(adapt,ratc=c/d);

 if(v>0, printf("%5s m, [c,n,m]=%5u, tests: %u\n",s,[c,n,m],tests)));
 testm("first"); minc=c; minn=maxn=n; minm=maxm=m1=m; m1r=ratc;
 while(1, m+=2; testm("inc"); if(c>minc, break);

if(c<minc, if(v>0, print("- found better above"));
 gobackm=0; minc=c; maxn=n; minm=m);

 minn=n; maxm=m);
if(gobackm, if(v>0, print("- go back")); m=m1-2; ratc=m1r;
 while(m>=1, testm("dec"); if(c>minc, break);
if(c<minc, if(v>0, print("- found better below")); minc=c; minn=n; maxm=m);
maxn=n; minm=m; m-=2));

if(v>0, printf(";[c,minn,maxm,maxn,minm,tests]=%5u\n",
 [minc,minn,maxm,maxn,minm,ttests])); [minc, minn,maxm, maxn,minm, ttests] }

Table(from,to,step=1,v=1,adapt=1,ratc=0.944646,ratm=0.533143)= {
 my(ratm=ratm,c,n1,m1,n2,m2,rat,tests,tot=0);
print("; digits cycles c/d [minn maxm]÷[maxn minm] avg(m)/d tests");
forstep(d=from,to,step, [c,n1,m1,n2,m2,tests]=BestM(d,v-1,adapt,ratc,ratm);
 tot+=tests; rat=(m1+m2)/2/d; if(adapt,ratm=rat);
if(v>0, printf("%8u %7u %.6f [%5u %5u]÷[%5u %5u] %8.6f %6u\n",
 d,c,c/d,n1,m1,n2,m2,rat,tests)));

 print("; total tests: ",tot) }

Griglia(from,to,step=1,ratc=0.944646,ratm=0.533143)= {
 print("digits,divisions,minn,maxm,maxn,minm,tests");
forstep(d=from,to,step, [c,n1,m1,n2,m2,tests]=BestM(d,0,1,ratc,ratm);
ratm=(m1+m2)/2/d; printsep(",",d,c,n1,m1,n2,m2,tests)) }

BestN(d,m,<optional parms>) gives the best n for specific d,m, by testing with the Madhava2 function.

BestM(d,<optional>) uses BestN to find the best range of (n,m).

Table() and Griglia() use BestM for a certain sequence of d values; Table writes the data in a nice form, Griglia does it

in a delimited text ready to be pasted in a spreadsheet. Use the history file generated by Pari to copy large lists.

Rick Ostidich, 2025.02.14 page 6 of 10

Every programmer among you will be able to quickly understand the optional arguments, and how the functions

work in details. In Pari/GP, function(x,y=something) defines parameter y as optional, and assigns y=<something> if

the argument is not specified.

Examples (note that here I intentionally use an imprecise ratc to show an example of more work done by BestN,

instead of the usual 2 tests required by an optimal ratc):

? BestN(10000,5333,1,0.9443)
 first n, [c,n,m,digits~]=[9443, 8221, 5333, 9997]
 - not enough precision
 inc n, [c,n,m,digits~]=[9444, 8223, 5333, 9998]
 inc n, [c,n,m,digits~]=[9445, 8225, 5333, 9999]
 inc n, [c,n,m,digits~]=[9446, 8227, 5333,10000]
 ;[c,n,tests]=[9446, 8227, 4]
time = 267 ms.
%1 = [9446, 8227, 4]

? BestN(10000,5333,1,0.9448)
 first n, [c,n,m,digits~]=[9448, 8231, 5333,10000]
 - go back
 dec n, [c,n,m,digits~]=[9447, 8229, 5333,10000]
 dec n, [c,n,m,digits~]=[9446, 8227, 5333,10000]
 dec n, [c,n,m,digits~]=[9445, 8225, 5333, 9999]
 ;[c,n,tests]=[9446, 8227, 4]
time = 281 ms.
%2 = [9446, 8227, 4]

 ? BestM(10000)
 first m, [c,n,m]=[9446, 8231, 5331], tests: 2
 inc m, [c,n,m]=[9446, 8227, 5333], tests: 2
 inc m, [c,n,m]=[9446, 8223, 5335], tests: 2
 inc m, [c,n,m]=[9446, 8219, 5337], tests: 2
 inc m, [c,n,m]=[9446, 8215, 5339], tests: 2
 inc m, [c,n,m]=[9447, 8213, 5341], tests: 2
 - go back
 dec m, [c,n,m]=[9446, 8235, 5329], tests: 2
 dec m, [c,n,m]=[9446, 8239, 5327], tests: 2
 dec m, [c,n,m]=[9446, 8243, 5325], tests: 2
 dec m, [c,n,m]=[9446, 8247, 5323], tests: 2
 dec m, [c,n,m]=[9447, 8253, 5321], tests: 2
 ;[c,minn,maxm,maxn,minm,tests]=[9446, 8215, 5339, 8247, 5323, 22]
 time = 1'422 ms.
 %3 = [9446, 8215, 5339, 8247, 5323, 22]

 ? Table(10,90,10)
 ; digits cycles c/d [minn maxm]÷[maxn minm] avg(m)/d tests
 10 10 1.000000 [11 5]÷[11 5] 0.500000 11
 20 19 0.950000 [17 11]÷[17 11] 0.550000 6
 30 28 0.933333 [23 17]÷[27 15] 0.533333 8
 40 38 0.950000 [31 23]÷[39 19] 0.525000 10
 50 47 0.940000 [37 29]÷[45 25] 0.540000 10
 60 56 0.933333 [47 33]÷[51 31] 0.533333 8
 70 66 0.942857 [51 41]÷[63 35] 0.542857 12
 80 75 0.937500 [65 43]÷[65 43] 0.537500 6
 90 86 0.955556 [71 51]÷[83 45] 0.533333 12
 ; total tests: 83
 time = 16 ms.

Rick Ostidich, 2025.02.14 page 7 of 10

 ? Table(100,900,100)
 ; digits cycles c/d [minn maxm]÷[maxn minm] avg(m)/d tests
 100 94 0.940000 [79 55]÷[83 53] 0.540000 8
 200 189 0.945000 [161 109]÷[169 105] 0.535000 10
 300 283 0.943333 [237 165]÷[257 155] 0.533333 16
 400 377 0.942500 [329 213]÷[329 213] 0.532500 7
 500 472 0.944000 [399 273]÷[427 259] 0.532000 20
 600 567 0.945000 [469 333]÷[521 307] 0.533333 32
 700 662 0.945714 [563 381]÷[591 367] 0.534286 20
 800 756 0.945000 [635 439]÷[687 413] 0.532500 32
 900 850 0.944444 [719 491]÷[767 467] 0.532222 30
 ; total tests: 175
 time = 297 ms.

 ? Table(1000,10000,1000)
 ; digits cycles c/d [minn maxm]÷[maxn minm] avg(m)/d tests
 1000 945 0.945000 [793 549]÷[857 517] 0.533000 38
 2000 1889 0.944500 [1621 1079]÷[1673 1053] 0.533000 32
 3000 2834 0.944667 [2419 1625]÷[2523 1573] 0.533000 58
 4000 3779 0.944750 [3241 2159]÷[3345 2107] 0.533250 58
 5000 4723 0.944600 [4065 2691]÷[4169 2639] 0.533000 58
 6000 5668 0.944667 [4867 3235]÷[5011 3163] 0.533167 78
 7000 6613 0.944714 [5681 3773]÷[5841 3693] 0.533286 86
 8000 7557 0.944625 [6545 4285]÷[6625 4245] 0.533125 46
 9000 8502 0.944667 [7371 4817]÷[7443 4781] 0.533222 42
 10000 9446 0.944600 [8215 5339]÷[8247 5323] 0.533100 22
 ; total tests: 518
 time = 14'390 ms.

Note that for "number of digits of precision", I mean rounding to nearest, and not truncation towards 0.

Since 𝛑=3.141'592'653…, when rounded to 5 digits of precision it's better approximated by 3.1416 than 3.1415.

As a matter of fact, it's curious to note that for calculating 𝛑 to 9 digits of precision 8 divisions are enough, while for

calculating it to 8 digits (one less) we need 9 divisions (one more!): Madhava2(7,5) = 3.141'592'649'399… which

rounds correctly to 3.141'592'65, but incorrectly to 3.141'592'6. (It should be …7.)

At the beginning of this text, I've said that the number of division required is less that the number of digits

requested, but this is always true only for d>31.

The only d for which c>d (it’s c=d+1 in these cases) are 4 and 8; the only d for which c=d are 1,2,3,5,7,10,31. All small

numbers, that we can ignore.

And after that, you can see that the ratios c/d and (central m)/d converge quite rapidly to the constants I use,

especially for big d.

These are great functions to graph; I cannot paste pictures or documents here, so you can try it for yourself, for

some very nice “a-ha” moments! (Now I could paste the pictures in the pdf, but I don’t want to spoil the joy for you.)

About these functions, I like to point out: the method to find the "valley" of a discrete function (searching in both

directions to ensure it is growing from there), the use of local sub-functions, the "verbose-level" parameter v (0—3),

and the "adaptive" method to speed-up the calculations a lot when you don't know yet the precise constants to use

(this has been very useful to quickly find the current constants).

Rick Ostidich, 2025.02.14 page 8 of 10

I don't have any idea if my methods are common or not amongst programmers: I program computers since 1977,

but I'm self-taught on everything, and I've never read any book nor followed any channel about "computer

programming". Most of the times, I re-invent a lot of things that happen to be already invented; this is what I always

liked to do, in my own ways, and several times it happened that I actually invented brand-new things. The fact that

every time I face a new topic I like to invent my own method to solve it, long before looking at what is already known

in the world (and picking cheap ready-made methods from the shelf), sometimes really generates methods that are

much more efficient than the known ones, and more suitable for the specific purpose.

In the past, this also happened on some important Math topics, that I'd very like to discuss together with Burkard.

The work shown here might catch his attention!

By the way: in year 2003, I personally invented from scratch a fantastic formula for quickly calculating the same 𝛑

that we’re discussing here, involving nested square roots of 2; I quickly ran to my parents’ house to show it to my

father, when he picked one of his book from the library and showed me a very similar formula, due to François Viète

in 1593. What a delusion. At least, my variation was very appropriate for computer implementation. But it was too

similar to Viète’s, so I dismissed that. But, a couple of years ago, I discovered that someone recently published a

paper about my identical algorithm, showing how this is a fantastic variation of Viète’s formula for a PC. Damn it!

Let’s go back to our functions here; to further improve them: we could save half of the time spent, by starting from a

reference n value, so that we don't need to re-evaluate the same alternating sum at every iteration (the ContFrac

part depends on n, but the AltSum doesn't depend on m); but I already spent too much time on this topic and I wish

to work on something else. ☺

As already said, the m parameter is currently required to be odd; we could also support even numbers, which would

increase the number of tests in the function BestM, but that would also restrict the center of the valley, so that in

the end we could achieve improved results in a similar amount of time. (All as a matter of saving 1 division in 50% of

the times; I don't know if it's worth it, but for the sake of completeness I would have liked to do this.)

Also, in order to estimate n I used (d∙ratc-m)∙2, which is very good if you are in the valley, but it's too optimistic when

you are far away (this only happens in case you're trying values d>10⁶, in order to improve my constants). Thanks to

adapt, it gets fixed after the first test, but it loses a lot of time on the first iteration. We could estimate n better

(according to known results in smaller numbers) and save some time.

I already mentioned that in Pari/GP these functions are always much faster if they use exact ratios instead of floating

point numbers (though they require a gcd calculation after every operation), probably because in floating-point they

require huge precision for every division. (And of course, with ratios of integers the divisions are accomplished by

multiplications, which are much faster.)

In my Rix language (my own syntax for machine language), I would implement these computations in a much

different way, without the need of most gcd calculations. I experimented that working on pure integers, and doing a

gcd each 1000 operations (to periodically reduce the dimension of the integers), you save half of the time even in

Pari/GP.

And, definitely we can improve the algorithms a lot, which as always is much more important that optimizing the

code.

In the end: these versions of the functions are quick enough to test up to around 100ˈ000 digits of precision.

In order to measure the constants for 1 million digits, I actually used what people call binary search to very quickly

find the limits of the wide valley, according to the aforementioned 𝑟𝑎𝑛𝑔𝑒 ≈
1

2
√𝑑, then saving a lot of time while

ensuring that no lower c is hidden somewhere within the current range.

The above functions could always exploit this technique, and save a lot of time.

Rick Ostidich, 2025.02.14 page 9 of 10

As always, it's very important for me to emphasize that Pari/GP (or other computer scripts - known as "languages")

are very easy and fun for experimenting the initial part of a project; but once you find the optimal algorithm, and

seek real efficiency, or want to work with huge numbers and a lot of iterations, it's necessary to write a real

computer program, in the only language that a computer directly understands: Machine Language.

If you trust my long experience, a program implemented in good machine language it's usually 100 to 1000 times

faster than a version in other modern "languages", not to count the greater compactness, and most importantly: the

reliability. Once upon a time, there was a saying that a program very well written in C would only be two to four

times slower than in machine language, and that was probably true at the time. But things got much more

complicated nowadays, and modern “programming languages” got definitely obscene and extremely far away from

the contact with the reality of the CPU, which in the end must do the work.

But probably it's better that I talk about this elsewhere, or in another comment if you ask.

Rix: (Okay, I included this section here, feel free to skip it if you’re not interested in it.)

Every time I converted Pari/GP scripts to Machine Language, I got a speed increase better than 1000 times, and more

importantly, even a better time complexity (big O notation).

And this is not because I'm the god of computer programmers (or maybe?!): the reason is that I still use the same

programming style that it was mandatory to follow in the `70, when computers had very limited speed and memory.

Plus, okay I'm quite good at it, and I never stopped improving that style since the seventies, before and after

inventing my new syntax “Rix”. I also taught this programming style to other people, and in a few years they were

achieving results similar to my own, or maybe even better. I’d be very happy if someone does better yet. And my

ultimate goal is to contribute to the quality of worldwide computer programming – which is currently a disaster.

I understand that a beginner, compared to something like basic or python, might find it “difficult” to learn the

complete machine language instruction set, with registers usage and stack and memory access, and without the help

of any sophisticated structure provided by the compiler; but there is no shortcut in computer programming, like in

the rest of Mathematics, and in Life in general.

And (I swear it!) when you're no longer a beginner it saves you a lot of time as you don't have to deal with all the

intricacies and red-tapes required by "high-level languages". Also, you don't have to trust anyone but yourself.

It is very similar to the case in which if you have to speak to a Chinese person; you have 3 ways of doing that:

1) Learn to fluently speak the Mandarin language (including a lot of common proverbs) and correctly write all the

Chinese characters; so that you have complete control of what you say and write, without any possibility of

misunderstanding (which is essential for computer programming).

2) Hire a human translator who does that for you, who is an expert you can trust infinitely, and who has the time

and ability to listen and understand every concept that you explain.

3) Take it easy and use Google Translate. But, don’t expect great results.

Indeed, writing in python (or even in C) is just like using a very sophisticated Google Translate, that in order to

achieve the level of complexity required by computer programming, it gets much much more complicated than

actually learning the actual Machine Language. And Chinese.

Also, if you speak a certain language, you’ve trained yourself to directly reason in that language, which gives you a

better connection to what you’re actually trying to communicate or obtain.

The fact that nowadays it’s no longer fashionable to write Machine Language programs (we all can see the sad

results) it's only a matter of business and money interests.

Rick Ostidich, 2025.02.14 page 10 of 10

Personally, I don't need Borland, I don't need Microsoft, nor any other brand nor teacher nor consultant nor any of

the thousands of companies that always try to convince programmers that they need their support.

The only thing that I actually need are the official Intel CPU manuals, which are available for free on their site.

When I program computers, I only need 2 program files: the text editor Thule.exe I wrote in 1989 (to write the

source code), and the Rix.exe assembler I wrote in 2004 (before then, I was using the old ASM Assembly syntax) to

convert the source files directly to the executable format. Together, they require 179 kB of space, including Unicode

fonts and icons. No other programs required. No linker, since the executable file depends bit-by-bit by the source.

Never used or desired any debugger or profiler. I never used any library, nor any piece of code written by anyone

else. No macros, no structures. And my programs use the Operating System’s APIs only for things that the OS doesn't

allow me to do by myself. Hard and wild life, but very much worth it in the end.

I still have to complete the English manual for Rix with all of the details (it’ll be an entire book about Math and

Language); I hope to finish it within this year 2025, then I’ll publish Rix and Thule for free on my website.

Note: I’m a bit conflicted by the fact that this text is not 100% complete (for example, I’m still not sure if to include

this section about Rix, as I would really like to avoid such things as self-celebration and complaints); but I realize that

most of the works that I did in my life are not yet published just because they’re not 100% complete – as they’ll

probably never be. So, I decided to publish this as it is right now, then maybe I’ll think about a new version later.

Conclusion, and credits:

It is very funny, and probably a bit silly, that during this long work that I did on Mādhava’s formula, my computer

actually calculated a very precise 𝛑 for billions of times, just in order to show what is the quickest way to

approximate it. ☺

But it was “quality” time, for me, and also for the CPU (I can speak to it, and it told me!); I enjoyed this a lot, and

maybe this work will be useful (or at least interesting) for someone else.

And, it's been another continuation of the work of the great Mādhava of Sangamagrāma and disciples - whom I

didn't even heard of before watching Mathologer videos. Another very long collaboration in Mathematics!

One reason for which I like so much Burkard's videos, is that I see in him something of myself (I am a flight

instructor, and in my theory lessons I've always used a similar entertainment approach), and most of all I see in him

something of my father Mario, who since my childhood is still teaching me the passion for Mathematics and Science

(being himself a self-taught person, as I am).

In a couple of Burkard's videos, I've seen from him the same respect and affection for his father; and in the latest

video (the one about Helicones) the same from his children to him.

Hence, I'd like to dedicate this work of mine to Polster family, and to my father Mario himself! 🤗 🍻

If you liked the work I did on this topic, please check the most recent comments to Burkard's other video about

Fermat's two square theorem, where in a couple of days I'm going to add another equally interesting (but much

shorter) comment, with other Pari/GP ready-to-use functions, about the results I achieved on that topic too.

Thanks for your time, ciao!

■ Rick Ostidich - made in Italy - © 1969

https://youtu.be/DjI1NICfjOk

